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Efficient Synthesis of
Glycosyl Enaminoesters
Directly from Glycosyl
Azides*

Rishi Kumar and Prakas R. Maulik
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Anup Kumar Misra

Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow,
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A convenient methodology has been developed for the synthesis of glycosylenaminoe-
sters directly from glycosyl azides under hydrogenation conditions. Yields were
moderate to good in all cases.
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INTRODUCTION

Enaminoesters or vinylogous carbamates are useful intermediates for the
synthesis of several bioactive natural products[1] and heterocyclic
frameworks.[2] They are also in use for the preparation of peptidomimetics[3]

and b-aminoacids.[4] Glycosylenamines have been used for the synthesis of
thioglycosides of azasugars,[5] iminocyclitols,[6] chiral pyrrolidines,[7] and
4-aminoaldoses.[8] In general, enaminoesters are prepared by condensation of
amines with b-ketoesters in the presence of a catalyst under anhydrous
condition.[9] Although these reactions are suitable for aliphatic amines, they
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are not very useful for the preparation of glycosylenamines due to the reactive
nature of glycosyl amines. A suitable alternative to overcome this problem
could be the reduction of glycosyl azide and reaction of in situ generated
glycosyl amines with b-ketoesters in a one-pot reaction condition. Recently,
we noted a report for the preparation of vinylogous carbamates of simple
alkyl azides under hydrogenation condition.[10] We sought to explore this
protocol for the preparation of glycosyl vinylogous carbamates from glycosyl
azides and disclose our findings in this report.

RESULTS AND DISCUSSION

To begin with, 2,3,4,6-tetra-O-acetyl-b-D-glucopyranosyl azide was treated
with a varied quantity of methyl acetoacetate and 10% Pd-C in different
solvents under hydrogen. After some experimentation, it was observed that
the use of 3.0 equiv. of methyl acetoacetate, 10% Pd-C (10% w/w), in ethyl
acetate as solvent furnished good yield of per-O-acetylated glucosyl enamino
ester as a single isomer (Sch. 1). Following the similar reaction condition, a
series of glycosyl azides[11] were directly converted to glycosyl enamino esters
(Table 1). Interglycoside bonds remained unaffected under the reaction con-
dition. It is noteworthy that 1,2-trans isomers were obtained exclusively,
which were confirmed from the NMR spectral analysis of glycosyl enaminoe-
sters (doublet of doublet or triplet for anomeric protons, J ¼ 9.4–10 Hz).
Although there was the possibility for the formation of Z- and E-isomers,
x-ray crystallographic study of compound 2 showed that only Z-isomers were
formed, which may be due to the presence of intramolecular hydrogen
bonding. Although other products (4, 6, 8, and 10) were not crystallized, it is
presumed that they exist as Z-isomers due to the presence of a intramolecular
hydrogen bonding. Products were well characterized with the help of NMR and
mass spectral analysis. Use of other solvents, such as toluene, methanol, and
ethanol, did not produce satisfactory yield of enamino ester, and glycosyl
amines were isolated as major product.

In order to confirm the Z-stereoselectivity, single crystal x-ray crystal-
lographic study of compound 2 was carried out.[12] The configuration,
conformation, and atom numbering of compound 2 are shown in Figure 1.
The crystal of compound 2 has one molecule in the crystal unit cell and

Scheme 1
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the pyranose ring exists in 4C1 conformation; however, due to crystal
packing, it is slightly distorted. The Cremer-Pople puckering parameters[13]

for the pyranose ring are as follows: Q ¼ 0.5678, u ¼ 5.298, and w ¼ 334.828.
Crystal packing studies of compound 2 reveal that the presence of a strong
intramolecular N-H. . .O55C interaction occurs between N1H1A. . .O2
(D. . .A ¼ 2.716 Å, H. . . A ¼ 2.11 Å, /D-H-A ¼ 1278). In addition, numerous
weak intra- and intermolecular C-H. . .O interactions were also observed,
which are tabulated below (Table 2).[14] Presence of intramolecular hydrogen
bonding may explain the formation of Z-isomer.

In summary, we have developed an efficient method for the preparation of
glycosyl enaminoesters directly from glycosyl azides under hydrogenation
conditions. This environmentally benign reaction protocol will find application
in synthetic carbohydrate chemistry.

Table 1: Preparation of glycosyl enaminoesters directly from glycosyl azides.

Entry Glycosyl azide Glycosyl enaminoester
Yielda

(%)

1 72

2 70

3 65

4 65

5 62

aIsolated yield.
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EXPERIMENTAL

General Experimental Protocol for the Preparation of
Glycosyl Enaminoesters
A solution of glycosyl azide (1.0 mmol), methyl acetoacetate (3.0 mmol),

and 10% Pd-C (10% w/w) in EtOAc (5 mL) was stirred under 40 psi of

Figure 1: ORTEP diagram of compound 2 (30% probability).

Table 2: Weak C-H. . .O hydrogen bondings in compound 2.

D-H. . . A Symm. code
D. . .A
(Å)

H. . .A
(Å) /D-H-A (88888)

C2-H2. . .O5a — 2.7012 2.29 104
C4-H4. . .O11a — 2.6769 2.31 101
C4-H4. . .O9b 1-x, -1/2þ y, 1-z 3.3133 2.51 139
C5-H5. . .O3b -x, -1/2þ y, 1-z 3.4801 2.52 168
C10-H10A. . .O7b x, 1þ y, z 3.4559 2.55 158
C10-H10B. . .O5b -x, ½þ y, -z 3.4463 2.51 164
C12-H12A. . .O11b 1-x, -1/2þ y, -z 3.4376 2.50 164

aIntramolecular.
bIntermolecular.
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hydrogen at rt for 12 h. The reaction mixture was filtered through a Celite bed
and concentrated under reduced pressure. Column chromatography of the
crude product over SiO2 using hexane-EtOAc (3:1) as solvent furnished pure
glycosyl enaminoester.

Spectral data of glycosyl enaminoesters

Compound 2:White solid, m.p. 149–1518C; [a]Dþ 124 (c 1.5, CHCl3);
1HNMR

(CDCl3, 300 MHz): d 8.92 (d, J ¼ 9.0 Hz, 1H, NH), 5.38 (d, J ¼ 3.0 Hz, 1H, H-4),
5.25 (dd, J ¼ 9.0 Hz each, 1H, H-2), 5.10 (dd, J ¼ 9.0 and 3.0 Hz, 1H, H-3), 4.72
(t, J ¼ 9.4 Hz each, 1H, H-1), 4.66 (s, 1H, olefinic H), 4.11–4.08 (m, 2H, H-6a,b),
3.95–3.90 (m, 1H, H-5), 3.66 (s, 3H, OCH3), 2.19 (s, 3H, CH3), 2.07, 2.05, 2.02,
2.0 (4s, 12H, 4 COCH3);

13C NMR (CDCl3, 75 MHz): d 169.9, 169.8, 169.6 (2 C),
169.3, 158.1 (C-10), 89.1 (C-30), 82.7 (C-1), 71.8, 71.3, 68.5, 67.3, 61.5 (C-6), 50.4
(COOCH3), 20.7 (2 C), 20.6 (2 C), 18.9; ESI-MS: 468.2 [MþNa]þ; Anal. Calcd.
for C19H27NO11 (445): C, 51.23; H, 6.11%. Found: C, 50.95; H, 6.38%.

Compound 4: Colorless oil; [a]Dþ 75 (c 1.5, CHCl3);
1H NMR (CDCl3,

300 MHz): d 8.80 (d, J ¼ 9.0 Hz, 1H, NH ), 5.40–5.38 (t, J ¼ 9.6 Hz each, 1H,
H-3), 5.22 (t, J ¼ 9.4 Hz each, 1H, H-2), 5.18–4.98 (m, 1H, H-4), 4.73
(t, J ¼ 10.0 Hz each, 1H, H-1), 4.64 (s, 1H, olefinic H), 4.26–4.02 (m, 2H,
H-6a,b), 3.73–3.68 (m, 1H, H-5), 3.62 (s, 3H, COOCH3), 2.12, 2.08, 2.07, 2.04,
2.0 (5 s, 15H, CH3, 4 COCH3);

13C NMR (CDCl3, 75 MHz): d 170.4, 170.2,
169.8, 169.3, 169.2, 157.9 (C-10), 89.8 (C-30), 82.1 (C-1), 73.8, 71.9, 68.3, 66.9,
61.8 (C-6), 50.4 (COOCH3), 20.6 (2 C), 20. 5 (2 C), 19.5; ESI-MS: 468
[MþNa]þ; Anal. Calcd. for C19H27NO11 (445): C, 51.23; H, 6.11%. Found: C,
50.96; H, 6.36%.

Compound 6: Colorless oil; [a]D2 39 (c 1.5, CHCl3);
1H NMR (CDCl3,

300 MHz): d 9.08 (d, J ¼ 9.3 Hz, 1H, NH ), 5.29–5.26 (m, 1H, H-4), 5.24
(t, J ¼ 9.0 Hz each, H-2), 5.18 (dd, J ¼ 9.6 and 3.0 Hz, 1H, H-3), 4.73 (dd,
J ¼ 9.8 Hz each, 1H, H-1), 4.67 (s, 1H, olefinic H), 3.95 (dd, J ¼ 11.9, 3.9 Hz,
1H, H-5a), 3.67 (dd, J ¼ 12.0, 2.1 Hz, 1H, H-5b), 3.65 (s, 3H, COOCH3), 2.13,
2.11, 2.08, 1.99 (4 s, 12H, CH3, 3 COCH3);

13C NMR (CDCl3, 75 MHz): d

170.6, 170.3, 170.0, 169.8, 158.9 (C-10), 88.8 (C-30), 81.9 (C-1), 70.1, 69.2, 67.7,
63.0 (C-5), 50.6 (COOCH3), 21.2, 21.0 (2 C), 19.1; ESI-MS: 396 [MþNa]þ;
Anal. Calcd. for C16H23NO9 (373.1): C, 51.47; H, 6.21%. Found: C, 51.18;
H, 6.40%.

Compound 8: Colorless oil; [a]Dþ 5 (c 1.5, CHCl3);
1H NMR (CDCl3,

300 MHz): d 8.82 (d, J ¼ 9.2 Hz, 1H, NH ), 5.25 (t, J ¼ 9.0 Hz each, 1H, H-3),
5.05 (dd, J ¼ 10.2 and 7.8 Hz, 1H, H-2), 4.97–4.91 (m, 2H, H-20 and H-40),
4.73 (t, J ¼ 9.1 Hz each, 1H, H-1), 4.64 (s, 1H, olefinic H), 4.48 (d, J ¼ 7.7 Hz,
1H, H-10), 4.38 (dd, J ¼ 10.3 and 1.4 Hz, 1H, H-30), 4.11–4.05 (m, 3H, H-4

Synthesis of Glycosyl Enaminoesters 87

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
5
3
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



and H-6a,b), 3.90–3.87 (m, 1H, H-5), 3.77–3.68 (m, 2H, H-60a,b), 3.66–3.64
(m, 1H, H-50), 3.63 (s, 3H, COOCH3), 2.16 (s, 3H, CH3), 2.12, 2.10, 2.07, 2.06,
2.04, 2.01, 1.96 (7 s, 21H, 7 COCH3);

13C NMR (CDCl3, 75 MHz): d 170.2 (2
C), 170.1 (2 C), 169.9 (2 C), 169.7, 169.1, 158.5 (C-100), 101.5 (C-10), 89.2 (C-
30), 82.2 (C-1), 76.8, 74.5, 73.2, 77.4, 71.3, 71.0, 69.4, 66.9, 62.7 (C-60), 61.1 (C-
6), 50.8 (COOCH3), 21.1 (2 C), 20.9 (3 C), 20.8 (2 C), 19.1; ESI-MS: 756
[MþNa]þ; Anal. Calcd. for C31H43NO19 (733.2): C, 50.75; H, 5.91%. Found:
C, 50.52; H, 6.20%.

Compound 10: Colorless oil; [a]Dþ 51 (c 1.5, CHCl3);
1H NMR (CDCl3,

300 MHz): d 8.85 (d, J ¼ 9.0 Hz, 1H, NH ), 5.39 (d, J ¼ 3.9 Hz, 1H, H-10),
5.35–5.27 (dt, J ¼ 9.6 Hz each, 2H, H-2 and H-3), 5.04–4.96 (t, J ¼ 9.8 Hz,
1H, H-20), 4.85–4.79 (ddt, J ¼ 9.8 Hz each, 3H, H-1, H-30 and H-40), 4.64 (bs,
1H, olefinic H), 4.38 (dd, J ¼ 12.0 and 2.6 Hz, 1H, H-6a), 4.25–4.16 (m, 3H,
H-4, H-5 and H-6b), 4.0–3.92 (m, 3H, H-50 and H-60a,b), 3.62 (s, 3H, COOCH3),
2.15 (s, 3H, CH3), 2.10, 2.05, 2.04 (3 s, 9H, 3 COCH3), 2.03 (s, 6H, 2 COCH3),
2.02, 2.0 (2 s, 6H, 2 COCH3);

13C NMR (CDCl3, 75 MHz): d 170.4, 170.3 (2 C),
170.1, 169.9, 169.7, 169.5, 169.3, 158.3 (C-100), 95.6 (C-10), 89.1 (C-300), 81.8
(C-1), 75.9, 75.6, 73.3, 73.1, 70.2, 69.5, 68.7, 68.2, 63.4 (C-60), 61.7 (C-6), 50.5
(COOCH3), 20.8 (2 C), 20.7 (2 C), 20.6 (2 C), 20.5, 18.7; ESI-MS: 756.2
[MþNa]þ; Anal. Calcd. for C31H43NO19 (733.2): C, 50.75; H, 5.91%. Found:
C, 50.52; H, 6.15%.
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